1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
| package Tree;
import sun.tools.tree.ThisExpression;
import java.util.Stack;
public class MyBinaryTree { public class BinaryNode implements Comparable<Integer> { BinaryNode lChild; BinaryNode rChild; Integer ele;
BinaryNode(Integer ele) { this(ele, null, null); }
BinaryNode(Integer ele, BinaryNode lChild, BinaryNode rChild) { this.ele = ele; this.lChild = lChild; this.rChild = rChild; }
@Override public int compareTo(Integer o) { return ele - o; } }
private BinaryNode root;
public MyBinaryTree() { root = null; }
public MyBinaryTree(Integer ele) { root = new BinaryNode(ele, null, null); }
public void makeEmpty() { this.root = null; }
public boolean isEmpty() { return root == null; }
public boolean contains(Integer node) { return contains(node, root); }
public boolean contains(Integer node, BinaryNode root) { if (root == null) { return false; } int result = root.ele.compareTo(node); if (result > 0) { return contains(node, root.lChild); } else if (result < 0) { return contains(node, root.rChild); } else { return true; } }
public Integer findMin() { if (isEmpty()) { throw new RuntimeException(); } return (Integer) findMin(root); }
public Integer findMin(BinaryNode root) { if (root == null) { return null; } else if (root.lChild == null) { return root.ele; } else { return findMin(root.lChild); } }
public Integer findMax() { if (isEmpty()) { throw new RuntimeException(); } return (Integer) findMax(root).ele; }
public BinaryNode findMax(BinaryNode root) { if (root == null) { return null; } else if (root.rChild == null) { return root; } else { return findMax(root.rChild); } }
public void insert(Integer x) { root = insert(x, root); }
public BinaryNode insert(Integer ele, BinaryNode root) { if (root == null) { return new BinaryNode(ele); } int result = root.compareTo(ele); if (result < 0) { root.rChild = insert(ele, root.rChild); } else if (result > 0) { root.lChild = insert(ele, root.lChild); } else ; return root; }
public BinaryNode remove(Integer ele) { root = remove(ele, root); return root; }
public BinaryNode remove(Integer ele, BinaryNode root) { if (root == null) { return null; } int result = root.compareTo(ele); if (result > 0) { root.lChild = remove(ele, root.lChild); } else if (result < 0) { root.rChild = remove(ele, root.rChild); } else if (root.lChild != null && root.rChild != null) { root.ele = findMin(root.rChild); root.rChild = remove(root.ele, root.rChild); } else { root = root.lChild == null ? root.rChild : root.lChild; } return root; }
public void printTree() { preOrder(root); }
public void preOrder(BinaryNode root) { if (root == null) { return; } System.out.print(root.ele + " "); if (root.lChild != null) { preOrder(root.lChild); } if (root.rChild != null) { preOrder(root.rChild); } }
public void inOrder(BinaryNode root) { if (root == null) { return; } if (root.lChild != null) { inOrder(root.lChild); } System.out.print(root.ele + " "); if (root.rChild != null) { inOrder(root.rChild); } }
public void subOrder(BinaryNode root) { if (root == null) { return; } if (root.lChild != null) { inOrder(root.lChild); } if (root.rChild != null) { inOrder(root.rChild); } System.out.print(root.ele + " "); }
public void preOrder_1(BinaryNode root) { Stack<BinaryNode> stack = new Stack<>(); if (root == null) { return; } BinaryNode p = root; System.out.printf(p.ele + " "); while (p != null || !stack.isEmpty()) { if (p != null) { System.out.printf(p.ele + " "); stack.push(p); p = p.lChild; } else { p = stack.pop(); p = p.rChild; } } }
public void inOrder_1(BinaryNode root) { BinaryNode p = root; Stack<BinaryNode> stack = new Stack<>(); while (p != null || !stack.isEmpty()) { if (p != null) { stack.push(p); p = p.lChild; } else { p = stack.pop(); System.out.printf(p.ele + " "); p = p.rChild; } } }
public void subOrder_1(BinaryNode root) { Stack<BinaryNode> stack = new Stack<>(); BinaryNode p = root; BinaryNode q = null; while (p != null || !stack.isEmpty()) { if (p != null) { stack.push(p); p = p.lChild; } else { p = stack.peek(); if (p.rChild == null || p.rChild == q) { q = p; p = stack.pop(); System.out.printf(p.ele + " "); p = null; } else { p = p.rChild; } } } }
public BinaryNode getRoot() { return this.root; }
}
|